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AN ELECTRON RING EXTRACTION SCHEME FROM
THE MODIFIED BETATRON ACCELERATOR

INTRODUCTION

The modified betatron acceleratorI'2 is one among the several compact I-5 high

current accelerator concepts currently under development in various laboratories. In

this device a strong toroidal magnetic field Be has been added to the conventional

betatron6 magnetic field configuration. Although B8 substantially improves the

stability of the conventional betatron, the beam injection and capture and the

electron ring extraction after the completion of acceleration are substantially more

involved as a result of the toroidal field.

In this report,--ye describe;on an extraction scheme that is easily realizable and

has the potential to lead to very high extraction efficiency. Briefly the proposed

extraction scheme is based on the transformation of the circulating electron ring

into a stationary helix, in the toroidal direction, by exciting the resonance that

naturally exists for some specific values of the ratio of the vertical to toroidal

magnetic field. Transformation of the ring into a helix is achieved with a localized

vertical magnetic field disturbance that is generated by an agitator coil. As the

minor radius of the helix increases with each passage through the gap of the agitator

coil, the electrons eventually reach the extractor, which has the property that all

the magnetic field components transverse to its axis are equal to zero. Thus, the

electron ring unwinds into a straight beam.... /

Description of the Extraction Scheme

After the completion of acceleration, i.e., when the desired electron beam energy

has been achieved, the electron ring centroid is displaced radially by intentionally

mismatching the magnetic flux and the betatron magnetic field. In the rpsults that

Manwript app ed Mamrch 21, 1988.
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will be shown in the next Section, this mismatch has been achieved by superimposing a

low amplitude vertical magnetic field that varies exponentially with time on the

betatron field. It has been shown theoretically and verified by extensive numerical

results that during the radial displacement of the ting centroid the amplitude of the

slow mode1 remains very small, i.e., a few mm, provided the mismatching field varies

slowly with respect to the ring bounce (poloidal) period. Furthermore, computer

simulations with the NRL MOBE particle-in-cell computer code have shown that during

the radial displacement, that lasts several microseconds, the minor cross section of

the ring preserves its integrity and the ring emittance remains constant.

As the major radius of the ring centroid increases slowly with time, the gyrating

electrons reach the localized magnetic disturbance generated by the agitator coil.

At this radial position the ratio of the vertical magnetic field B to the toroidal

magnetic field Be has been selected to satisfy the condition
84

B Z/B 2 1/(2 12-1), (1)

where 1 - 1,2,3 ......

Equation (1) implies that the frequency of the fast mode is 1 times the

frequency of gyration around the major axis. When Be >> Bz , Eq. (1) is reduced to E)

lz, where Qe2 eBe/m and 2z = eBz/m.

7,8
The purpose of the magnetic disturbance is to excite the resonance 8

. As an

electron enters the lower magnetic field region of the disturbance, its velocity

vector that initially is directed in the toroidal direction, rotates slightly in the

radial direction, i.e., the electron obtains a radial velocity component. It can be

24



shown from the equations of motion that this radial velocity is given by

AVr  -2( az/)r 40, (2)r z a

where 9a is the cyclotron frequency that corresponds to the field of the disturbancez

generated by the agitator coil, y is the relativistic factor, r a is the radial

distance of the agitator coil and Ae is the toroidal half width of the magnetic

disturbance.

As a result of the acquired radial velocity, the electrons start to gyrate in tcii

toroidal magnetic field with a radius

p 2(N/I)(A/g9 ) ra Ae, (3)

where N is the number of passes through the disturbance. If condition (1) is not

satisfied, p grows as N1/2 instead of proportionally to N.

Since y is very large, self fields can be ignored. However, because of the

gradient of B the slow mode1 (bounce motion) is still excited and the orbits ofz

electrons in the transverse (r,z) plane precess very slowly. Therefore, for times

short in comparison with the bounce period, i.e., for a few revolutions around the

major axis, all the electrons of the ring perform coherent motion and a stationary

helix, in the toroidal direction, is formed. A top view of the helix is shown in

Fig. 1, for 1 = 3.

Ideally, the radial gradient of the magnetic disturbance should be extremely

high, because otherwise the fast mode 1 is excited before the ring reaches the

disturbance. In the computer runs of the next Section a disturbance with a

A3
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satisfactorily sharp radial gradient is obtained by the single turn agitator coil

shown in Fig. 2. The radial gradient of the disturbance is further improved with two

single turn loops that are located at the edges of the gap. The radial profile of

the B field is shown schematically in Fig. 3. In the computer runs, the magneticz

field of the disturbance has been obtained from exact analytical expressions that are

given in the Appendix.

With successive passes through the disturbance of the agitator the radial

excursion of the orbit increases until the gyrating electrons reach the extractor,

which is located at 9-0 and at a slightly greater radial distance than the agitator

coil. The results of the next section were obtained with a simple extractor

consisting of two parallel plates with current flowing in opposite directions. These

two plates have infinite extent in the z and semi-infinite extent in the y direction.

The linear current density of the plates is adjusted to make the total B between the~z

plates at 9=0 equal to zero. The side of the extractor at 8=-0 is completely

enclosedby the thin conducting foil. As a result the fringing fields are absent.

The elect ons enter the extractor through this foil without any substantial energy

loss. At the entrance of the extractor the vertical displacement of the electrons

and their radial velocity are almost zero. However, they have a small vertical

velocity.

In practice, this extractor can be realized by bending the two plates to form a

torus. In order for the field to be uniform over a finite vertical distance, the

cross section of each plate, after bending, should be D-shaped. In the results of

the next Section, the orbit of the extracted beam is terminated after it propagates

tens of cm inside the extractor. The reason is that the disturbance of the extractor

A is independent of y while the betatron field decreases with y. Thus,

4



cancellation of the fields is not achieved over the entire length of the extractor.

In practice exact cancellation of the two fields can be obtained by increasing the

separation of the two plates as y increases.

In the previous discussions, we have assumed that the magnetic disturbance

generated by the agitator coil is static. An alternate mode of operation is to

expand the ring until it reaches the gap of the agitator coil and then to rapidly

pulse the coil. Since the inductance of the agitator is typically only a few nH,

short rise times, of the order of 1 nsec can be achieved with modest voltages. In

the pulsed mode of operation the fraction of the ring that will be lost is

approximately equal to the ratio: coil rise time/ period of gyration around the

major axis.

Finally, it should be noticed that an ion channel9 formed by a laser beam along

the axis of the extractor may improve the extraction process and eliminate the need

for an additional coil to cancel the component of Be that is transverse to the axis

of the extractor or the need to completely cancel the B inside the extractor.z

RESULTS

We have studied the proposed extraction scheme in both the static and pulsed mode

for a range of parameters that are compatible with the NRL modified betatron

accelerator. In this report we will present results from five runs, one in the

pulsed mode and four in the static mode. The various parameters of the runs for y=40

are listed in Table I and the parameters of the runs for y=400 are listed in Table

II. Since Y>>I, self and image field have been ignored and therefore the ring

current is not a relevant parameter. Also at this high y the beam minor diameter is

expected to be only a few mm.

5
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In the run 267, the pulsed agitator was turned-on after the ring's major radius

became 121 cm. Figure 4a shows the radial excursion of a typical electron that was

located at eO at the turn-on of agitator. After a single pass through the agitator

the electron obtains enough radial excursion to enter the extractor and is extracted. 0

Figure 4b shows that the electron at the distrubance obtains a transverse velocity

approximately 2.8x10-2c. Equation (2) predicts a Avr = 2.7x10-2c. In addition, the

numerical results show tk.- Lhe electron gyrates around Be with a I cm radius, which

is also the radius ",redicted by Eq. (3). -
.

In the run 26,, the electron started at r-11O cm and was moved radially by the

mismatching field. The elapsed time from the minor axis to the agitator is -4.5

usec, that corresponds to an average radial velocity of -2.2xi06 cm/sec. The

amplitude of the slow mode is less than 2 mm. Figure 5a shows the radial excursions

of a typical electron in the r,e plane and Fig. 5b shows a top view of its orbit.

The electrons reach the extractor with a vertical displacement from the midplane that

is only a few mm. For the reason given in the previous section, the run was %

terminated after the electron propagated -30 cm inside the extractor.

In the runs 268, 270, and 272 the y was increased to 400 with a corresponding

increase in the value of magnetic fields. Results from run 268 are shown in Fig. 6.

Figure 6a shows the radial excursions of the electron and Fig. 6b is a top view of "

its orbit, when the resonance condition is satisfied at r=120 cm. The coherence of

the radial excursions is remarkable. We have found that this coherence is preserved
,p.

even when Eq. (1) is not satisfied exactly, i.e., when the value of Be field is off a

few percent. In run 270 the value of Be was reduced by 2% from its corresponding i
value in run 268. The results are shown in Fig. 7. Finally, by operating at 1=1 or

12 instead of at 1=3, the value of Be can be substantially reduced. The results for

12 are shown in Fig. 8.

6 1



In conclusion, we have developed a new extraction scheme that is practical and

has the potential, since all the electrons of the ring perform coherent motion, to

lead to a very high extraction efficiency.
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TABLE I

List of various parameters for the runs shown in Figs. 4 and 5

RUN # 267 266

Agitator's mode Pulsed Static

Relativistic factor y 40 40

Major radius r (cm) 100 100

Vertical field at r (G) 649.9 649.9o

Toroidal field at r (G) -1921 -1971

Field index n 0.5 0.5

Resonance integer 1 3 3

Amplitude of mismatching field (G) --- 60

Time constant of mismatching field (usec) --- 10

Agitator's toroidal position 1.3R 1.26H

Agitator's toroidal width 24e(rad) 0.05 0.066

Agitator's inner radius (cm) 120 120

Agitator's outer radius (cm) 122 124

Agitator's opening (cm) 1.0 2

Agitator's linear current density (kA/cm) 0.25 0.375

Agitator's field AB (G) -300 -450z

Extractor's opening toroidal position 0 0

Extractor's minimum inner radius (cm) 121.5 120.5

Extractor's minimum outer radius (cm) 125.5 124.5

Extractor's field ABe (G) -590.0 -590

8
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TABLE II
List of various parameters for the runs shown in Figs. 6, 7, and 8

RUN # 268 270 272

Agitator's mode Static Static Static

Relativistic factor y 400 400 400

Major radius r (cm) 100 100 100

Vertical field at r (G) 6501 6501 6501
0

Toroidal field at r (G) -19710 -19310 -11940

Field index n 0.5 0.5 0.5

Resonance integer 1 3 3 2

Amplitude of mismatching field (G) 600 600 600

Time constant of mismatching field (usec) 10 10 10

Agitator's toroidal position 1.26ff 1.261 0.941

Agitator's toroidal width 26e(rad) 0.066 0.066 0.066

Agitator's inner radius (cm) 120 120 120

Agitator's outer radius (cm) 124 124 124

Agitator's opening (cm) 2 2.0 2

Agitator's linear current density (kA/cm) 3.75 3.75 3.75

Agitator's field ABa (G) -4500 -4500 -4500z

Extractor's opening toroidal position 0 0 0

Extractor's minimum inner radius (cm) 120.5 120.5 120.5

Extractor's minimum outer radius (cm) 124.5 124.5 124.5

eExtractor's field AB (G) -5900 -5900 -5900

9a'
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APPENDIX

The Anplied Fields

The purpose of this Appendix is to describe the various magnetic fields that were -.

used in the numerical integration of the ring orbits.

Let the global cylindrical coordinates be (r,9,z) and the global cartesian

coordinates be (x,y,z), so that

x - r cos 8, (la)

y = r sin 0. (lb)
I

The two clindrical components of the applied betatron field, that were used in

the code are:

r 0 n
Bz B !-I, (2a)

z zo 'r )

Br rzo n (2b)

where r0 is the major radius and n is the field index.

In addition to the betatron field, a time dependent homogeneous magnetic fiel "

the mismatching field, is applied to shift the electron ring radially outward.

The mismatching field is given by

mis mis ( t/ ) (

where T is the time constant.

The applied toroidal magnetic field varies inverse proportionally to the radial

distance, i.e.,

r
B8 = BOo r (4)

III



The extractor consists of two parallel plates with current flowing in opposite

directions. These plates have infinite extent in the z and semi-infinite extent in

the y-direction. A thin conducting foil completely encloses the extractor at e=O.

The magnetic field inside the extractor is given by

ext m Text
B e xtl ' (4)

wher ext is the linear current density of the extractor.1 ext de o rdc n
Outside the extractor, the linear current density does not produce any

field. The current of the extractor is adjusted to make the veritcal field zero near

e-O.

The agitator field is more complicated. Let the agitator be located

symmetrically at some toroidal angle 0, and let (x',y',z) be the local coordinate

system of the agitator. Then

X'.= x cos OO + y sin 8O - rl, (5a)

y' . -x sin 0 0 y cos 0°  , (5b)

where r is the radial distance of the minor axis of the agitator from the origin of

the gloval coordinate system. In addition, let a be the radial width of the

agitator, b its toroidal width and h the height of its gap. For simplicity, the

toroidal correction will be omitted. In this case, the magnetic field of the

agitator is that of a solenoid of rectangular cross section and infinite length minus

the contribution of the missing piece of the solenoid of height h, radial length a,

width b and linear current density I*

As a representative case, consider the contribution of one section of the missing

piece of the solenoid, namely, the one which is perpendicular to the x'-axis and

12
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located at x'=a/2 in the local coordinate system of the agitator. The vector -w

potential due to this section is equal to

rb/2 h/2

A Idy" Idz" , (6)Y '-b/2 '-h/2 ,-'+ I(Y "-) 2  (z,,_"Z) 2]1  2

or, after performing the integral with respect to y",

h/2) 2 2 2 1/2I1/r d.nb_ a,[ -'] + (b - yI ("- z(7)

1~ z I n 2 ~'L~ )~~Z)J
A, -- dz l 2 2 172

-h/C2 + y') +.[~ x') +. (~.y') + (Z toZ]

where Gaussian units are being used everywhere. The magnetic field is computed from

the expressions

aA
B' Y" (8a)a, z

B = . (8b)z ax'

The Bx, - component is easily computed since Ay, depends on z"- z, the a/az can be

replaced by -a/az" inside the integral, and the integration with respect to z"

becomes trivial. Therefore, we have

I a x, + Y, +

i+- 7 ( b + ) 2 - 2

13



b rY1 +2 2 x2 + Z2 1/2

-in 2 ( L2 -T )' ~ 1(9
Y') +4 I X') 2 +~ + Y' 2  + z2 172

In order to write the fields in compact form, we introduce the following functions:

hp - z (10a)
2

hm= - z ,(lOb)m 2

f = u2 v2 P ,( l a )

f2= 2 2

u + v ,(lib)

= f2+ h2  (12a)
pp pp

f2.= f2 + h 2  (12b)

pm p mi

f2 = f2 + h2  (12c)

mp m p

f2 _= f2 + h2  (12d)
m m m

gpWf Vp+ fpp (13a)

gpm= Vp+ fpm (13b)

gmp= vm+ fmp (13c)

g3  3 f,.(13d)
gmm m+ f mm(1d

where the variables u, v , and v3 will be defined later on.

14
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Furthermore, by defining the following two qualities

(u, v , Vm, Z, h) = In 9g D
D 9MM (14a)p m gpm gmp]'

(u, Vp, v,, z, h) = sign (u) *

f 2+ v fp

{ sin (h) * Arsin [f m
sign (h)* Arcsin p pp

- sign (h)* Arcsin m m mp
p f g m

-sign (hi * Arcsin D f p mJ

~f + V f)
+ sign (hin * Arcsin m m(14b)

the Bx, component can be written as ',

' eC

Bx,(X', y' z) = -- b y', z, h (15)
Sh 2i

The Bz component is obtained from Equs. (8b) and (7) and is equal to

ii a
Bz= - 2z --

h/2 (z"-z)2+ x')24 - y)4 - Y')[(zz)2  Y , 2/2

2 - X1
1(16)

- )( + Y'J( + YJ[(Z _z) 2( - Y,)2 ]1/2 1

15



These are integrable functions and the Bz component can be expressed in terms of

as follows:

Bz(X',y',z) = 1-- , - - , z, h (17)

In a similar fashion, the contribution of the other three sections can be

computed and the total contribution of all four sections of the missing piece is:

x(X' Y , z) (a -x , b - b y1, z, h

- -x, X y, - -y', z, h), (18a)

,(X', y', z) - ,a -x', a x' zhI, -y',x Y"Z "i- 1, - 2- x, z,h
yc 2 2

S~- ' - -i -x', z, , (18b)

Bz(x', y' z) = i.-- -x2- ' - ,

- ft - ,, b - - b-- t , z, h'

- , - , - x', Z, hS -_ 2 X_ y, ya z, h, a

t - y'" X, - -- x', z, h (18c)

16



As mentioned above, these fields should be subtracted from the magnetic field of the

solenoid, which is equal to

4 I1  inside the solenoid (19)
B z

0 outside the solenoid.

In the order to make the fields drop sharper in the radial direction, two

rectangular loops at z - h/z and z - -h/2 were added to the agitator, to compensate

for the missing current of the gap. The radial and the toroidal width of the loops

were the same as those of the rectangular solenoid, while the current in each loop

was chosen equal to
1lh

2 (20)

The computation of the magnetic fields of these two loops is straight forward.

It is convenient to define the following two functions:

h (u, v p, v , z, h) =

p mppgpp

=h~ g -f g )
pp pp mp mp

hm f gmm , (21a)

(u, Vp , vm , z, h) = (21b)

_ Ufplgpp i + pm fglm

p mp gmp pm gpm mm mm)

17
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where all quantities have already been defined in Eqs. (10) - (13). Then the

magnetic field components of both loops are:

( ', y' Z) = - x', - y ,, z, h

'- w - x1, , - b- y', z, h (22a)(w(_ x,, b 1,

By$' 2- Z) " L -- '  z, h(2 )

' 2 '2- , z, h

y, z) = - - x' z . , - (

2 21

y 1
-- & - ~wXa - Y- 1 , z, h

z 2 2 2' ~

+ - - , - x', z, h

- w 7, 2-- - - x', z, h (22c)

These components are easily transformed from the local coordinate system of the

agitator to the global coordinate system.

181
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Modified Betatron
Ring Extraction Agitator Coil

Electron Ring
Undisturbed Orbit

Major Axis
A%

ey

Electron Ring
at ?z3 resonance

Extractor Extracted Beam

Top View
Fig. 1. Schematic of the proposed extraction scheme.
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Fig. 4. Radial excursions of a typical electron 'I) and its corresponding normalized. .
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Fig. 5. Radial excursions of a typical electron (a) and top view of its trajectory in
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